
Query language for relational databases
Author: David Koňařík Supervisor: Mgr. Tomáš Petříček, Ph.D.

Currently all popular relational database management systems
(RDBMSs) use SQL as their query language, and most
SQL alternatives are implemented by translation into SQL.

In our thesis, we looked at SQL’s flaws and existing
alternatives, designed and described PPPQL, a new query
language, and implemented it directly into the Postgres
RDBMS as an extension.

Why not SQL?

• SQL queries are composed of fixed parts in a fixed order.
• SQL query syntax doesn’t match the semantic order

of operations.
• SQL has a number of different kinds of expressions, which

can only be used in specific contexts.
• SQL doesn’t offer convenient abstraction mechanisms.
• SQL’s features are generally defined as new syntax, making

the language incohesive.

Why PPPQL

• PPPQL is based on an extensible pipeline concept.
• PPPQL’s syntax is simple and directly reflects the semantic

order of operations.
• PPPQL unifies all disparate multi-value concepts into one

set-of-values concept.
• PPPQL’s integration into Postgres allows it to report user-

friendly errors, so users don’t have to debug any
intermediate SQL.

Postgres extension

PPPQL is implemented as a Postgres extension, using
a lightweight patch to replace the stock parser and analyser.

Code can be sent via the existing Postgres protocol, simply by
starting a query with “PQL”. Results are returned as if the user
had sent an SQL query.

Links

Code repository: https://gitlab.mff.cuni.cz/konarid/pppql

Homepage: https://dvdkon.ggu.cz/pppql

The thesis is available from the above link and contains
comparisons with other relational query languages, more
example queries, a full specification of PPPQL and an overview
of its implementation.

Basic expressions

PPPQL reuses Postgres’ expression semantics, and freestanding
expressions are allowed:

2 + 2
4
upper("Hello") || " world!"
HELLO world!

Operations on scalars can be automatically lifted to work
elementwise on sets:

[1,2,3] + 2
{3,4,5}

Tables are also expressions, represented as Postgres arrays
of records:

buildings
{"(Karlín,MFF,Praha)","(Trója,MFF,Praha)",...}

Simple queries

Queries in PPPQL are composed from filters, starting with
a data source like from, and then further adding modifying
filters, like where, order, group, let, limit and select.

A query can consist of only one filter, or multiple filters
combined in basically any order:

| from buildings
 | where faculty = "MFF"
 | let un := upper(name)
 | select un, buildings.city

MALÁ STRANA | Praha
KARLÍN | Praha
TRÓJA | Praha

Grouping queries

In SQL, grouping rows by a key creates a special kind of value:
Grouped columns can only be used as arguments to aggregate
functions. In PPPQL, grouping simply gives the user the
grouped rows as an array:

| from measurements
 | group day := date(timestamp)
 | select day, measurements.temperature

2020-01-30 | {21,22}
2020-01-31 | {21,20}
2020-01-03 | {18,18}

Postgres aggregate functions are then represented as functions
taking a set argument:

sum([1,2,3,4])
10

https://gitlab.mff.cuni.cz/konarid/pppql
https://dvdkon.ggu.cz/pppql

	Query language for relational databases
	Why not SQL?
	Why PPPQL
	Postgres extension
	Links
	Basic expressions
	Simple queries
	Grouping queries

